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Abstract. An approach to Bayesian model selection in self-exciting threshold
autoregressive (SETAR) models is developed within a reversible jump Markov chain
Monte Carlo (RJMCMC) framework. Our approach is examined via a simulation study
and analysis of the Zurich monthly sunspots series. We find that the method converges
rapidly to the optimal model, whilst efficiently exploring suboptimal models to quantify
model uncertainty. A key finding is that the parsimony of the model selected is influenced
by the specification of prior information, which can be examined and subjected to
criticism. This is a strength of the Bayesian approach, allowing physical understanding to
constrain the model selection algorithm.
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1. INTRODUCTION

The modelling of physical systems is typically accomplished by building models
incorporating the physics of relevant processes. For applications such as global
climate models (e.g. Latif et al., 1998), the level of complexity involved can be
enormous because so many processes must be modelled to produce useful
predictions. As pointed out by Tong et al. (1985), it may be worthwhile
constructing relatively simple stochastic models that capture the essential features
of the physics. These models will typically be easier to interpret, which can in turn
provide valuable insights into the physical processes being modelled.
An important trend in statistics over the past 15 years or so has been a fusion of

ideas from dynamical systems and nonlinear time series, expounded most clearly
perhaps by Tong (1990). These tools provide a nonlinear framework for
examining physical phenomena. We pay particular attention in this study to the
self-exciting threshold autoregressive (SETAR) models developed by Tong and
Lim (1980). However, the issue of model selection has not progressed so quickly,
as noted by Wong and Li (1998). This is an important question in geophysical
applications where some understanding of the important physical variables and
their inter-relationships can provide important insights and new understanding.
Existing methods for selecting nonlinear time series models are dominated by
penalised likelihood methods, such as Akaike’s information criterion (AIC). The
AIC approach is described in some detail by Tong (1990, pp. 281–90).
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Bayesian model selection is a rapidly expanding field of research, particularly
with the development of reversible jump Markov chain Monte Carlo (RJMCMC)
by Green (1995). This approach generalizes MCMC, which generates samples
from posterior distributions of model parameters, to generate samples from a
unified parameter space encompassing all models of interest. In this way a single
simulation can be used to select the model having highest posterior support and
obtain a sample from its posterior distribution.
The remainder of this paper is structured as follows. In Section 2 we introduce

the class of SETAR models. In Section 3 we discuss the use of simulation
methods in Bayesian model selection and in Section 4 we apply these ideas to
SETAR models. In Section 5 we illustrate our results in a case study of the Zurich
sunspots data. We finish with a discussion and some conclusions drawn from our
work.

2. SELF-EXCITING THRESHOLD AUTOREGRESSIVE MODELS

Many physical systems exhibit complex behaviour that cannot be represented by
classical autoregressive moving-average (ARMA) time-series models (Tong, 1990,
pp. 7–12). One way to represent such systems is to model them as piecewise linear.
A class of piecewise autoregressive models for a time series {Yt} is defined by
breaking its state space R into a disjoint union of regimes {Ri}. The boundaries of
the regimes are defined by an ordered set r0, r1,…,rl where r0 and rl are taken to be
)1 and +1 respectively. Thus R ¼

Si¼l
i¼1 Ri, where Ri ¼ [ri)1,ri) and r1,…,rnr

(nr ¼ l ) 1) are known as thresholds. We define a SETAR model as:

Yt ¼
Xpj
i¼1

/ðjÞ
i Yt�i þ et; Yt�d 2 Rj; j ¼ 1; . . . ; nr þ 1:

We depart from Tong’s (1990, p. 101) general definition by explicitly allowing
different orders in each regime and limiting the innovations to act at time t
only. We also do not include an intercept term at this stage. The innovation
variance in regime j is assumed to be r2j . The regime switch is triggered by the
lag-d value of the series. In this study we assume d ¼ 1 and examine the
problem of obtaining posterior distributions for the model orders and
parameters.
The model is appealing from a physical perspective as many physical systems

are state dependent in the sense that the nature of their future evolution is
dependent on their current state. A number of such examples are discussed by
Tong (1990); Graham and Barnett (1987) found enhanced convection beyond a
critical sea surface temperature of about 29�C. The notion of a physical switch
causing a shift in regime is an appealing one of current interest in many areas,
such as climatology (e.g. Berliner et al., 2000) and hydrology (e.g. Lu and
Berliner, 1999).

468 E. P. CAMPBELL

� Blackwell Publishing Ltd 2004



3. MODEL SELECTION BY SIMULATION

Modern computational approaches to Bayesian statistics use simulation to
generate samples from the posterior distribution of interest. The most successful
technique to date is MCMC (see Tierney, 1994 and Smith and Roberts, 1993,
for a review of the theory and practice of MCMC). To use MCMC to select
models from a collection of candidates X ¼ {xi: i ¼ 1,…,M} the Markov random
walk must be generalized to be over a combined model–parameter space
(X,Q1,…,QM) say. Here there are M possible models having parameters
{Qi: i ¼ 1,…,M}.
Alternative approaches to this problem have been pursued by Carlin and Chib

(1995) and Green (1995). The approach of Carlin and Chib (1995) essentially
defines the unified space as the product of the parameter spaces, whereas Green’s
(1995) RJMCMC method defines the joint space as the union of the parameter
spaces. As this latter approach seems more natural, we seek to develop this
framework in a SETAR context.
Here we briefly review the fundamental concepts of the RJMCMC

methodology. We may view RJMCMC as a generalization of the Metropolis-
Hastings algorithm, for which the acceptance probability can be written as

aðH;H0Þ ¼ min likelihood
ratio

	 prior
ratio

	 proposal
ratio

; 1

� �
;

where Q is the current state of the chain and Q¢ the proposed new state. For
convenience, in this discussion we denote the posterior by p(Æ). A sufficient but not
necessary condition for the convergence of an MCMC algorithm is reversibility or
detailed balance defined by p(Q¢)P(Q¢,Q)¼p(Q)P(Q,Q¢), where P(Q,Q¢) denotes
the transition kernel from Q to Q¢ of the Markov chain defining the algorithm.
Green’s approach supplements the transition kernel by first selecting a move type
(jump) between model subspaces defined by the elements of X. An independent
proposal for the appropriate Q¢ is then made. Thus the proposal ratio will be the
product of at least two terms. The more general acceptance probability that
satisfies the condition of reversibility is given by

aðHð1Þ;Hð2ÞÞ ¼ min likelihood
ratio

	 prior
ratio

	 move
ratio

	 proposal
ratio

	 Jacobian; 1
� �

:

ð1Þ

This incorporates a Jacobian to account for any functional relationship between
the parameters in making the proposal. In equation (1) Q(1) denotes the
parameter vector before the jump and Q(2) the proposed parameter vector after
the jump.
The key feature to ensuring reversibility is the structure of the proposal ratio.

Moves that change the dimension of the parameter vector, and thus violate the
assumptions of the Metropolis-Hastings algorithm, must be in detailed balance
with the opposite move. Perhaps the most straightforward way to execute a
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dimension-changing move is to augment Q(1) and Q(2) with random vectors u(1)

and u(2), drawn from densities q1(Æ) and q2(Æ) such that the resulting augmented
vectors are of equal length. Thus Q(1) fi (Q(1),u(1)) and Q(2) fi (Q(2),u(2)).
Thus (1) becomes:

aðHð1Þ;Hð2ÞÞ ¼ min P ðYjHð2ÞÞ
P ðYjHð1ÞÞ

P ðHð2ÞÞ
P ðHð1ÞÞ

jð2;Hð2ÞÞ
jð1;Hð1ÞÞ

q2ðuð2ÞÞ
q1ðuð1ÞÞ

Jacobian; 1

( )
; ð2Þ

where j(Æ) denotes the move-type probability for a particular model and parameter
combination.
Green developed the reversible jump theory by modelling [x,hx,Y] using a

natural hierarchical structure defined by

½x; hx;Y� ¼ ½x� ½hxjx� ½Yjx; hx�; ð3Þ

where we use [Æ] to denote ‘distribution of ’ or ‘density of ’. Thus the
specification of prior information also requires us to define a prior over X. In
a time-series context, this will typically require a prior for the model’s order,
an approach also pursued by Heintel (1998), although in the context of
conjugate inference. We refer the reader to Green (1995) for further technical
details of RJMCMC.
A few applications on a variety of themes have appeared in the literature to

date, including Dellaportas and Forster (1999), Denison et al. (1998), Heikkinen
and Arjas (1999), Richardson and Green (1997) and Stephens and Fisch (1998).
Relatively few applications to time-series models have been published (including
De Jong, 1997; Chen, 1998; Lu and Berliner, 1999). Chen and Lee (1995) and
Chen (1998) examine the use of Gibbs sampling to fit two-regime threshold
models, the latter study incorporating exogenous predictors, but in both cases
assuming the autoregressive orders to be known.
Barbieri and O’Hagan (1996) presented an application of RJMCMC to ARMA

models, parameterizing the model using partial correlation coefficients. This
allows stationarity of the model to be enforced in a straightforward manner.
Troughton and Godsill (1997) developed a reversible jump sampler for
autoregressive models using the full conditional density for the autoregressive
coefficients directly, which is available explicitly. The trade-off is that they do not
enforce stationarity. It could be argued that allowing the stationarity conditions
to be relaxed allows a more thorough exploration of the structure of a particular
time series to be examined. This idea has been explored by Naylor and Marriott
(1996) in the context of autoregressive models.
Troughton and Godsill (1997) compare their complete update algorithm to

only making proposals for new parameters. In some cases they found this latter
procedure (‘partial updates’), in which acceptance probabilities are much faster to
compute, slow to converge due to a more highly correlated Markov chain. We
examine an approach using partial updates for SETAR models. We also do not
enforce stationarity, which is more complicated for SETAR models (Tong, 1990,
pp. 139–86) than autoregressive models.
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4. SELECTING SETAR MODELS

In terms of a reversible jump algorithm, we note that a method for selecting
autoregressive orders combined with a move between regimes is sufficient to
select general SETAR models. We therefore develop the algorithm by first
considering autoregressive model selection within a regime and then
incorporating moves between regimes. Note that we assume that the number
of thresholds is first chosen by an appropriate diagnostic or by physical
considerations, and is then assumed known. In the physical applications
motivating this study we sought a small number of thresholds, so that the
results are interpretable. If a large number of thresholds are indicated, then
perhaps a more sophisticated approach is called for. We return to this topic in
the discussion.

4.1. Order selection within a regime

In this section we develop a reversible jump MCMC approach to selecting the
order of an autoregressive (AR) model defined by

ð1� /1B�    � /pB
pÞYt ¼ et;

for a time series {Yt: t ¼ 1,2,…} such that E(Yt) ¼ 0; et � N(0,r2) is an
independent white-noise sequence and B denotes the backshift operator
BYt ¼ Yt)1. In practice, it is sensible to choose a maximum permissible order
for the model, which we denote by pmax. Thus the candidate models are indexed
by the set {0, 1, …, pmax}. Given that the current model subspace is defined by
p ¼ k, an important consideration in choosing suitable move types is to ensure
hierarchical ordering of the model terms. One way to achieve this is to choose
randomly from the move types ‘Birth’, ‘Remain’ and ‘Death’ in which
k fi k + 1, k fi k and k fi k ) 1 respectively. We denote the ‘Birth’ and
‘Death’ move type probabilities by bk and dk respectively.
The ‘Remain’ move does not change the dimension of the current parameter

subspace, and was included as an aid to efficient mixing. As this move can be
accomplished using a conventional Metropolis-Hastings algorithm, we merely
sketch the details. A single-site updating Metropolis-Hastings random walk
algorithm was used. The time-series coefficients were updated using normal
proposal distributions, whilst the error variance was updated using an inverse chi-
squared distribution (Campbell et al., 1999).
The ‘Birth’ and ‘Death’ moves do change the dimension of the current

parameter subspace, and so must be in detailed balance with one another. Since
there is only one pair of dimension changing moves it is sufficient to discuss the
‘Birth’ move in detail, the acceptance probability for the corresponding ‘Death’
move following by implication.
If /(1) and /(2) denote the time-series coefficients before and after the ‘Birth’

move respectively, then a straightforward way to accomplish the move is to
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augment /(1) by a random observation u. Note that this is simpler than the
general algorithm since we need only generate a univariate random number. We
then set /(2) ¼ /(2)(/(1),u)¢, which will in general require the Jacobian term to be
present in the acceptance probability (1). We adopt a simpler approach by
generating a purely random proposal for /k+1|/

(1) and setting /(2) ¼ (/(1),/k+1)¢,
so there is no need for a Jacobian.
Note that as an aid to efficient mixing we adopt the same approach as Stephens

and Fisch (1998) and update r2 after each update of time-series coefficients.

4.1.1. Choice of prior distributions
In keeping with the hierarchical framework (3), we specify priors for the model
order and [/p,r

2|p] as follows. We used an inverse chi-squared distribution for r2,
having mean 1 and variance 1. This choice should be a satisfactory representation
of vague prior knowledge for data standardized to have variance 1. We chose
normal priors for the time series coefficients, each having mean 0 and variance 1.
All parameters were assumed to be a priori independent.
It remains to select [p], the prior for the model order. In classical time-series

analysis, AIC penalises overly complex models. In a Bayesian framework we seek
to do this via our prior beliefs, which become an explicit modelling assumption.
As noted above, we select a maximum order (pmax) for the model so that the prior
for p is truncated above. We have investigated both a uniform prior and a Poisson
prior to examine the impact on model parsimony.

4.1.2. Move-type probabilities
We follow Green (1995) in using [p] to construct the move-type probabilities, and
set

bk ¼ cminf1; ½k þ 1�=½k�g
dkþ1 ¼ cminf1; ½k�=½k þ 1�g

;

and we choose c such that bk + dk £ 0.9; the ‘Remain’ probability is set to
1 ) bk ) dk. In this formulation, the move ratio for a ‘Birth’ step is bk/dk+1, whilst
for a ‘Death’ step the move ratio is dk/bk)1.

4.1.3. Choice of proposal distributions
To ensure that the proposal process is efficient, it is important that the ‘Birth’
proposal produces sensible values. We have used a normal proposal distribution,
the variance of which can be tuned according to the generally accepted rules
described by Weir (1997), i.e., we seek to set the proposal variance to be a little
more than the marginal posterior variance whilst achieving an acceptance rate in
the range of 30–70%. It is not entirely obvious that these rules apply directly to
RJMCMC, but in our experience they provide a reasonable guide. We have
calculated a sensible mean for the proposal as follows. In obvious notation, a
conditional least-squares (Tong, 1990, pp. 296–302) estimate can be found by
minimizing
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Sð/kþ1Þ ¼
Xn
t¼kþ2

Yt �
Xkþ1
i¼1

/iYt�i

 !2

¼ Sð/kÞ � 2/kþ1
Xn
t¼kþ2

Yt�k�1 Yt �
Xk
i¼1

/iYt�i

 !
þ /2kþ1

Xn
t¼kþ2

Y 2t�k�1:

If we substitute the current values for /k and solve for /k+1 we obtain

/̂kþ1 ¼
Pn

t¼kþ2 Yt�k�1ZtPn
t¼kþ2 Y

2
t�k�1

; ð4Þ

where Zt ¼ Yt �
Pk

i¼1 /iYt�i. We use /̂kþ1 as the mean of a proposed birth move
in the work reported below.
The proposal ratio for a birth step therefore becomes 1/q(/k+1|/

(1)), where
q(Æ) denotes a normal distribution having mean given by (4) and an
appropriately chosen variance. The proposal ratio for the corresponding death
step is 1 because we always kill the highest order term when a death move is
proposed.

4.2. Moves between regimes

Note that, in general, we allow separate innovation variances and orders for each
regime. The parameter vector in this context may therefore be written as
H ¼ fri: i ¼ 1; . . . ; nr; /ij; r

2
i : i ¼ 1; . . . ; nr þ 1; j ¼ 1; . . . ; pig. The autoregres-

sive algorithm is easily adapted to this situation by selecting a regime at random
as part of the move-type selection. In obvious notation, our move-type algorithm
for selecting SETAR models becomes:

(1) Select a regime at random with probability (nr + 1))1;
(2) Calculate ‘Birth’ and ‘Death’ probabilities bðrÞk and dðrÞk , and set the ‘Remain’
probability to 1� bðrÞk � dðrÞk and select the move-type according to these
probabilities.

The procedure for selecting AR(p) models then applies directly. A notable
difference in this algorithm is the calculation of the ‘Remain’ probability, which
now varies with regime. However, since we choose bðrÞk þ dðrÞk O 0:9 this implies
that the ‘Remain’ probability is at least 0.1, as before. Note that the move-type
probabilities do not depend on the model parameters, so the move-type
probabilities are not required in the acceptance probability for moves that do
not bring about a change in dimension. A single-site updating Metropolis
algorithm with normal proposal distributions was used for the threshold
parameters {ri: i ¼ 1,…, nr}. The algorithm was more stable and efficient using
independence chains (Tierney, 1994) than a random walk, which was found to
wander between thresholds.
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4.3. Simulation study

We first examined the autoregressive algorithm. Our main finding is that there is
some sensitivity to the specification of the prior for the model order. When using a
uniform prior the algorithm tends to choose large models, depending on the size of
pmax, because there is nopenalty for lack of parsimony.We found that provided pmax
was not chosen too large the algorithm worked well, but high-order models were
selected otherwise. A Poisson distribution provides a more informative prior, and
was found toworkwell. In particular, there was no dependence on the value of pmax.
To examine the performance of the SETAR model selection algorithm we

simulated a time series of length 1000 from the model

Yt ¼ 0:5Yt�1 � 0:2Yt�2 þ 0:4Yt�3 þ eð1Þt ; Yt�1O 0

0:5Yt�1 � 0:6Yt�2 þ eð2Þt ; Yt�1 > 0,

(

where eð1Þt and eð2Þt are both distributed as N(0,1). The independence chain mean
used for the threshold parameter was the known value of 0. The prior for the
model orders is a Poisson distribution having mean 3 and truncated above at
pmax ¼ 6 in each case.
The model occupation probabilities after a burn-in of 10,000 iterations followed

by 10,000 iterations thatwere collected for analysis are shown inTable I.We see that
the algorithm has selected the correct model orders with a substantial degree of
certainty, although there is some evidence that the first regime could be of order 4.
Summary statistics for the corresponding posterior distribution are given in
Table II.We see that the true parameter values liewithin the 95%credibility interval

TABLE II

Summary of Posterior Distribution for the Optimal SETAR Model for the Simulated Data

Set. All Estimates are Quoted Correct to 2 sf* Except for Variance Parameters, which are

Correct to 4 sf

Parameter Posterior mean 95% credibility interval

r )0.0096 )0.055 to 0.0068
/11 0.44 0.38 to 0.52
/12 )0.13 )0.21 to )0.048
/13 0.39 0.33 to 0.45
r21 0.9322 0.8266 to 1.058
/21 0.55 0.47 to 0.63
/22 )0.62 )0.69 to )0.54
r22 1.091 0.9693 to 1.246

*Significant figures.

TABLE I

Model Occupation Probabilities for the Simulated SETAR Data Set

Regime 2 model order

Regime 1 model order

3 4 5 6

2 0.7535 0.2331 0.0132 0.0002
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in each case, although /12 is somewhat marginal. These results are quite impressive
and suggest that RJMCMC has much to offer in identifying nonlinear time-series
models. To assess the sensitivity of these results to prior assumptions about model
order in each regime, a sensitivity analysis was conducted. A number of
combinations of prior means were drawn from the set {1, 2, 3, 5, 7} for each
regime, and pmax 2 {6,7,8,9,10}. In general, it appears to be better to allow the prior
to have a generousmean, since a choice that is too small seems to inhibit the random
walk. A too large choice will show up as an optimal model having poorly defined
higher order terms. In this case, the prior mean can be amended appropriately. We
may prefer to deal with this by assigning a hyper-prior to the prior mean. Note that
as the algorithm was found to be most stable when the threshold parameter was
updated last, this approach was adopted for the case study.

5. CASE STUDY

We now apply our SETAR model selection method to an analysis of the Zurich
monthly mean sunspot numbers (1749–1984) described and listed up to 1983 by
Brillinger (1985, pp. 67–74). These data are also available via the world-wide web
at http://lib.stat.cmu.edu/datasets/Andrews/. The data were standardized prior to
analysis to have mean 0 and variance 1, and are shown in Figure 1.

Figure 1. Zurich monthly mean sunspot numbers 1749–1984, standardized to have mean 0 and
variance 1.
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An important consideration in modelling using SETAR models is choosing the
number of thresholds. Some preliminary runs of our algorithm assuming nr ¼ 1,
but with a relatively large proposal variance, will provide an indication both of
the appropriate number of thresholds and their approximate location. The results
of a run of 10,000 iterations for the sunspot series are shown in Figure 2, where
the independence chain mean and variance were 0 and 2 respectively. This
threshold appears to be well defined, at about )0.4, which is supported by the
likelihood function shown in Figure 3. Note that this likelihood function is for the
optimal model orders found in the tuning run, presented here for clarity in
preference to the likelihood trace for the entire set of iterations. Further runs of
the algorithm with a range of means and proposal variances provided further
support for this approximate location, with no evidence of any further thresholds,
such as the threshold parameter residing in more than one part of its state space
for extensive periods. Note that the algorithm in some early runs placed the
threshold below the range of the data. This corresponds essentially to a
degenerate autoregressive model; in likelihood terms, the fit was relatively poor
and so not of interest.
Note that the initial tuning run resulted in optimal regime model orders (11, 5).

However, the coefficients for the six highest order parameters in regime 1 were not
well defined, suggesting that the initial prior mean of 10 was too large. In
subsequent runs, the prior means were set to 5 in each case.

Figure 2. Results of applying an over-dispersed independence chain for the threshold parameter
assuming a single threshold.
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Proposal variances for each of the parameters were chosen as rounded-up
values of the marginal variances found in the tuning runs, based on the suggested
optimal model. The algorithm was then re-run with a burn-in of 10,000 iterations,
followed by 10,000 iterations collected for analysis. The optimal model selected
has regime orders (4, 5), with model occupation probabilities shown in Table III.
For reference, AIC selects an autoregressive model of order 28, so the SETAR
model uses 17 fewer parameters. The posterior distribution is summarized in
Table IV. The threshold of )0.4 on the standardized scale corresponds to 33.9 on
the original scale. Not surprisingly the error variance in the upper regime is
considerably larger than the error variance for the lower regime. Each of the time-
series coefficients is well defined.
The observed data are reproduced together with the one-step-ahead predictions

in Figure 4, and the match appears to be excellent. This is largely confirmed by

Figure 3. Log-likelihood trace for optimal model found in tuning run.

TABLE III

Model Occupation Probabilities for Sunspots Case Study

Regime 1 model order

Regime 2 model order

4 5 6 7

4 0.1405 0.4900 0.3265 0.0031
5 0.0192 0.0138 0.0067 0.0000
6 0.0000 0.0001 0.0001 0.0000
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Figure 5, which shows the one-step-ahead predictions plotted against the
observed values. The correlation between observed values and one-step-ahead
predictions is 0.93. Note that as these one-step-ahead predictions are used as a
quick check on the fitted model, they simply use the posterior means of the
parameters for the optimal model. There is some evidence that the variance

TABLE IV

Summary of Posterior Distribution for the Optimal SETAR Model for the Zurich Mean

Monthly Sunspot Numbers Data Set. All Estimates are Quoted Correct to 2 sf Except for

Variance Parameters, which are Correct to 4 sf

Parameter Posterior mean 95% credibility interval

r )0.40 )0.41 to )0.39
/11 0.53 0.47 to 0.58
/12 0.18 0.12 to 0.22
/13 0.17 0.13 to 0.23
/14 0.095 0.051 to 0.16
r21 0.04492 0.04145 to 0.04872
/21 0.59 0.54 to 0.67
/22 0.11 0.012 to 0.17
/23 0.089 0.032 to 0.17
/24 0.095 0.048 to 0.14
/25 0.071 0.015 to 0.11
r22 0.2022 0.1888 to 0.2180

(a)

(b)

Figure 4. Observed values (a) and one-step-ahead predictions (b) for the Zurich monthly mean
sunspot series.
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increases with the mean, which has been found by other researchers working on
the Wolf sunspot series (e.g. Tong, 1990, pp. 419–29) who examined a square-root
transformation). We do not explore this issue here.

6. DISCUSSION AND CONCLUSIONS

We have developed a Bayesian approach to the selection of nonlinear time series
models using RJMCMC methodology. It has been shown that this approach can
reliably identify known models, and has performed well with a real data set. The
method is able to quickly identify models having strong posterior support, whilst
also exploring less well supported models. The method is fast because it only
updates new parameters, an approach termed ‘partial updates’ by Troughton and
Godsill (1997). These authors raised the concern that such an approach may suffer
from poor mixing as a result of high correlations between successive steps. This
has not been found to be so in our applications to date, but could become an issue
in more complicated models, such as in addition estimating the number of
thresholds and the delay parameter.
An important feature of the Bayesian approach is that model parsimony is

determined by explicit prior assumptions about model order. These assumptions
can be checked and amended in the light of available data, a feature that is not

Figure 5. One-step-ahead predictions against observed mean sunspot numbers.
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available using AIC. This is especially valuable when no strong prior knowledge
is available, but does require a nonrigid approach to the specification of prior
knowledge in relation to model order. It could be argued that neither the
uniform nor Poisson priors are ideal, although the Poisson prior was clearly
superior. One suggestion made in this study is to place a hyper-prior on the
prior mean; given a suitable choice, such as a gamma distribution, this should
prove to be an aid to rapid mixing by inducing an over-dispersed prior for
model order.
The method at present assumes the number of thresholds to be known,

although their location is not. The algorithm can be used with a large proposal
variance to indicate the appropriate number of thresholds and their
approximate location, and this approach worked well in our case study.
However, the uncertainty in not knowing the number of thresholds is
unaccounted for by this procedure. The approach developed in this study
could readily be extended to estimate the number of thresholds by incorporating
an additional move type. This move type would represent the birth of an
additional threshold or the death of an existing threshold. These moves change
the dimension of the parameter space, and so would have to be reversible moves
in detailed balance. In this way a full accounting for uncertainty could be made.
Note also that a move-type to increase or decrease the delay (assumed to be 1 in
this paper) could also be incorporated in a very natural way. These suggestions
are the topic of ongoing research, along with the incorporation of exogenous
predictors. As noted above though, the use of partial updates may be less
efficient in these contexts.
Rigorous diagnosis of MCMC convergence is elusive, and therefore

especially so for RJMCMC. One approach is to use RJMCMC to identify
an optimal model, which is then fitted using a conventional MCMC algorithm.
The sample collected may then be analysed using existing convergence
diagnostics. In our work convergence was essentially obvious, in that the
algorithm settled on a small subset of optimal or near-optimal models relatively
quickly. A reasonable burn-in therefore seemed sufficient to guarantee
convergence.
A separate study of monthly rainfall data found that the one-step-ahead

predictions did not reproduce the volatility of the observed series. The inclusion of
intercept terms in each autoregressive regime was found to improve the fit in this
regard, with no change required to the methodology.
As in the case study presented in this paper, there is typically support for a

number of candidate models. This suggests that posterior summary statistics
should in general be model-averaged to incorporate the uncertainty due to model
selection. These are readily available by retaining samples from sub-optimal
models, but model averaging is a big area in itself and not the purpose of this
study. In this study we have presented model occupation probabilities as a guide
to the performance of the algorithm.
The software and simulated data sets used in this study will be available from

the author’s web page at http://www.cmis.csiro.au/Eddy.Campbell/.
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